Gene regulation of UDP-galactose synthesis and transport: potential rate-limiting processes in initiation of milk production in humans.
نویسندگان
چکیده
Lactose synthesis is believed to be rate limiting for milk production. However, understanding the molecular events controlling lactose synthesis in humans is still rudimentary. We have utilized our established model of the RNA isolated from breast milk fat globule from seven healthy, exclusively breastfeeding women from 6 h to 42 days following delivery to determine the temporal coordination of changes in gene expression in the carbohydrate metabolic processes emphasizing the lactose synthesis pathway in human mammary epithelial cell. We showed that milk lactose concentrations increased from 75 to 200 mM from 6 to 96 h. Milk progesterone concentrations fell by 65% at 24 h and were undetectable by day 3. Milk prolactin peaked at 36 h and then declined progressively afterward. In concordance with lactose synthesis, gene expression of galactose kinase 2, UDP-glucose pyrophosphorylase 2 (UGP2), and phosphoglucomutase 1 increased 18-, 10-, and threefold, respectively, between 6 and 72 h. Between 6 and 96 h, gene expression of UDP-galactose transporter 2 (SLC35A2) increased threefold, whereas glucose transporter 1 was unchanged. Gene expression of lactose synthase no. 3 increased 1.7-fold by 96 h, whereas α-lactalbumin did not change over the entire study duration. Gene expression of prolactin receptor (PRLR) and its downstream signal transducer and activator of transcription complex 5 (STAT5) were increased 10- and 2.5-fold, respectively, by 72 h. In summary, lactose synthesis paralleled the induction of gene expression of proteins involved in UDP-galactose synthesis and transport, suggesting that they are potentially rate limiting in lactose synthesis and thus milk production. Progesterone withdrawal may be the signal that triggers PRLR signaling via STAT5, which may in turn induce UGP2 and SLC35A2 expression.
منابع مشابه
Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactos/UDP-glucose transporter.
The synthesis of non-cellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as substrate. The topology of these reactions is not known, although the orientation of a plant galactosyltransferase involved in the biosynthesis of galactomannans in fenugreek is consistent with a requirement for UDP-galactose in the lumen of the Golgi cisternae. Here we ...
متن کاملTransformation and expression of Penicillium funicolusum glucose oxidase gene in yeast
Glucose oxidase is an important enzyme hydrolyzing for its hydrolyzing activity on glucos. It possesses and has a wide board of applications in different industries such as bakery, pharmaceutical, plant pathology and biosensors. In this study, yeast (Saccharomyces cerevisiae) was transformed successfully by the glucose oxidase gene (gox) obtained from Penicillium funicolusum. The secreted gluco...
متن کاملDetection of Single-Nucleotide Polymorphism in the Bovine AGPAT6 Gene Associated with Milk Fat Content using Tetra-Primer ARMS PCR-based Assay in Karan Fries Breeding Bulls
Background: The bovine AGPAT6 gene is one of the potential candidate genes governing milk fat synthesis.Objectives: Identification of single nucleotide polymorphisms (SNP) in the targeted region of AGPAT6 gene and their effect on expected breeding values (EBV) of first lactation milk production traits viz. fat %, fat yield and 305 days milk yield in Karan Fries (KF) breeding bulls were so...
متن کاملTransport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans.
The lumen of the Golgi apparatus is the subcellular site where galactose is transferred, from UDP-galactose, to the oligosaccharide chains of glycoproteins, glycolipids, and proteoglycans. The nucleotide sugar, which is synthesized in the cytosol, must first be transported into the Golgi lumen by a specific UDP-galactose transporter. Previously, a mutant polarized epithelial cell (MDCKII-RCAr) ...
متن کاملFunctional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 303 3 شماره
صفحات -
تاریخ انتشار 2012